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ABSTRACT 

The application of vibration isolation with particular low or high supporting stiffness is widely 
used in the field of science and engineering. These particular supporting stiffness can be 
provided by using active vibration isolation. The supported structure is connected to the active 
isolation unit, therefore creating an interaction between the structure vibration behaviour and 
the isolation unit dynamic characteristics. This work investigates the interaction between a 
structure and an active isolator for a low stiffness support to design an accurate practical 
isolation system.  It is found that the structure provides additional mass, stiffness and force to 
the active isolator. This shows that the interaction affects the active isolator and this must be 
considered when designing a practical isolation unit. 

 

INTRODUCTION 

Currently in the field of science and engineering there is a need for vibration isolation systems 
with particular low or high suspension frequency. Large civil aircrafts that undergo ground 
vibration tests (GVT) require a suspension frequency of less than 1/3 of the system’s 
fundamental frequency [1]. GVT aims to provide modes of vibration of a free-free beam to an 
aircraft.  It is therefore necessary to further develop methods of support for large thin- wing 
aircraft with fundamental frequencies less than 1Hz. To realize this condition, a method that has 
been found to provide suspension frequencies of less than 0.25 Hz for a limited range of 
movement, is by using nonlinear spring system [1]. Applications of GVT around the world 
include amongst others, at the National Aeronautics and Space Administration (NASA) Dryden 
Flight Research Center (Kehoe and Freudinger (NASA Technical Memorandum, 1994)) at the 
European Aerospace and Defence System (EADS) in Sogerma-Bordeaux, France and the 
Embraer in Sao Paolo, Brazil [2]. 

Apart from using the method of nonlinear spring system, another method that can provide 
particular vibration isolation performance requirements is by using active vibration isolation 
system. An active vibration isolation system provides active feedback control that can modify 
the dynamic stiffness of a passive system [3]. 
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As discussed by Xing et al. [4] for the analysis of structure-control interactions, the dynamic 
characteristics of both structures and control system affect each other. Therefore, to assess the 
efficiency of an active isolation system, it is necessary to consider interactions. In a previous 
paper [5], some work has been done without considering interactions. The work is extended in 
this paper which aims to develop an integrated interaction analysis of a generalised active low 
suspension frequency system and its supported structure.  

 

MATHEMATICAL MODEL OF AN INTEGRATED ACTIVE ISOLATOR-
STRUCTURE INTERACTION 

The active isolation unit was designed according to the work of Xing et al. [3]. Here, they 
illustrated several design strategies that can produce zero or infinite-dynamic modulus. A beam 
is attached on top of the active isolator to analyse the beam active-isolator interaction. 

 

Figure 1: An integrated system consisting of an elastic beam and an active isolator unit. 

 

Figure 1 shows an integrated interaction system in which an elastic structure is supported by 
an active vibration isolation unit. To simplify the mathematical analysis and maintain the 
essential characteristics of the problem, the structure is considered as a uniform elastic free-
free beam subject to two harmonic forces tF 00 cos  applied symmetrically at point 0  under 
the beam coordinate system YO  fixed at the middle point O  of the beam. There is a 
lumped mass M  connected at point O  by a rigid rod with its mass included in M . The beam 
is of span length S2 , mass density   per unit length and bending stiffness EI . Since 
the beam is elastic, its deflection ),( tY  is a function of beam material point  and time t . The 
lumped mass M is supported by an active isolation system and it moves in the y  direction 
only. The active isolation system consists of k and c which denote the stiffness and damping 
coefficients of the mechanical device supporting the static weight of the aircraft wing. A spring 
of small stiffness k1 is connected in series with an active displacement feedback controller. 
The feedback control system provides a dynamic force fc=gd y proportional to the 
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displacement. A direct current signal isolator is used so that the feedback system produces 
only alternating forces acting on the mass. Therefore, the feedback system does not affect the 
static stiffness of the supporting system. 

 

Dynamic equilibrium equation and boundary conditions of beam structure 

The dynamic equilibrium equation and boundary conditions of the beam structure are shown 
as below: 
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Here, ,/())(   ,/())( t  etc., and bsf  represents a dynamic shearing force acted on 
the beam section 0  by the rigid rod, ()  denotes Delta function. 

The deflection ),( tY    which represents the dynamic deflection of the beam relative to the 
static state of the beam is represented by a mode summation form: 
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based on the non-dimensional symmetrical mode functions )(nY , ),...,2,1( Nn  , of the 
uniform free-free beam. Here, N  denotes a number of the retained mode functions )(nY  and 

n  represents a generalised coordinate corresponding to mode n, which has a length 
dimension. These mode functions satisfy the following orthogonal relationships, 
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The sub-index n indicates the mode number of the free-free beam, n̂ , nK  and nM represent 
the n-th natural frequency, generalised stiffness and mass, respectively. For the free-free 
beam, its first mode is a rigid mode with frequency 0ˆ

1   and mode function .11 Y   

Substituting Equation (2) into Equation (1) and using the orthogonal relationships (3), we 
obtain the following mode equation describing the beam motion  
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Dynamic equilibrium equation of the active suspension system 
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The dynamic equilibrium equation of the active suspension system in Figure 1 is described by 
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Here, the force sbf  denotes the reaction force from the beam to the lumped mass M . 

 

Interaction conditions between the beam structure and the active suspension unit 

On the interaction section 0  between the beam and the active suspension unit, a dynamic 
equilibrium condition and a geometrical constraint condition are required, i.e. 

 

Equilibrium:                        ,,0 fffff sbbssbbs                                        (6)    

Geometrical constraint:       ),(),0( tytY                                                                      (7)  

which, when Equation (2) used, is written in the mode form  
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INTERACTION ANALYSIS OF BEAM-ACTIVE ISOLATOR WITH LOW 
SUSPENSION FREQUENCY 

From Equation (4) we have 
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Multiplying Equation (10) by 0Y , leads to 
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Using Equation (6) we have 
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Substituting Equation (16) into Equation (5), we obtain 
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Here, bm and bk  represent an additional dynamic mass and stiffness, respectively, which are 
added to the active suspension system by the beam due to their dynamic interactions. bf  
defines a force factor at which the excitation force is added to the lumped mass. The values of 
these added parameters depend on the retained mode number of the beam. The added 
stiffness bk  also involves the dynamic response Φ  of the beam. For a unit dynamic response 
of mode n, i.e.  Tn

T 0000  Φ , the added mass and stiffness are 
respectively obtained by Equations (18-1) and (18-2),  

                                                 ,YM)(m 2
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Here, we consider 1N  implying that only one rigid mode 11 Y  with 0ˆ 2
1   in Equation (1) 

is retained, so that 10 Y , and therefore we have  

                                                                                                                                 (19)                            
  

Physically, bm  in Equation (19) is the total mass of the beam. Since the beam is considered 
rigid and there is no elastic deformation, the added stiffness ,0bk and the force factor 1bf .  

Table 1 and 2 show the values of the added parameters affected by retained mode number, N 
and values of the added parameters affected by a unit dynamic response mode, n. 
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Table 1: The values of added parameters affected by retained mode number N of the beam on the 

nonlinear suspension unit,  10  . 

 

N 1 2 3 4 5 

bm  100 167.6685 217.0955 267.1206 317.1223 

bf
 

1.000 -0.9685 0.6986 -0.7075 0.7071 

 

Table 2: The values of added parameters affected by a unit dynamic response mode n of the beam on 
the nonlinear suspension unit. 

 

n
 

1 2 3 4 5 

 nbm 
 100 67.67 49.43 50.03 50.00 

 nbk 
 0 68 1443 8908 30787 

  

From Table 1 it can be seen that the additional mass, mb   increases as the number of retained 
mode, N increases. The value of force factor is seen to be positive at odd numbers of retained 
modes and negative at even numbers of retained modes. The positive value of force factor 
defines a pulling force and a negative value implies a compressed force. 

From Table 2 it can be seen that the added mass,  nbm   decreases as the mode number 
increases. However, the value of additional mass for mode numbers n = 3, 4, and 5 continue 
to have a similar value of approximately 50. The added stiffness,  nbk   for a unit dynamic 
response is seen to increase as the mode number, n increases.  

 

CONTROLLER DESIGN FOR BEAM-ACTIVE ISOLATOR WITH LOW 
SUSPENSION FREQUENCY 

In this section, a suitable negative feedback gain for the beam-active isolator that can provide 
a low suspension frequency was obtained and inserted into the active system to observe its 
response. 

 

 

Finding suitable negative feedback gains that provide a low suspension frequency 

From Equation (17), the frequency of the supporting system for a unit dynamic response mode 
n is given by  
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there is support compared to no support. Meanwhile from Table 4 it can be seen that the 
frequencies at each retained mode N=1~5 is reduced when there is feedback control. 

Table 3: The values of frequency of the beam for modes n= 1~5 with no support and no feedback 
control as compared to with support but no feedback control  

 

mode Frequency (No support, no feedback 
control- beam natural frequencies only) 

Frequency (With support but no 
feedback control) 

1 0 4.408 
2 3.536 5.437 
3 19.11 8.217 
4 47.18 14.59 
5 87.73 25.34 

 

 

Table 4: The values of frequency of the beam for modes n= 1~5 with support and with 

feedback control 

 

mode Frequency 
using gd=-
653.89 (N=1 
retained 
mode) 

Frequency 
using gd=-
661.31 (N=2 
retained 
mode) 

Frequency 
using gd=-
761.56 (N=3 
retained 
mode) 

Frequency 
using gd=-
899.80 (N=4 
retained 
mode) 

Frequency 
using gd=-
952.47 (N=5 
retained 
mode) 

1 0.100 0 0 0 0 
2 1.0025 0.1 0 0 0 
3 5.3511 5.2229 0.1 0 0 
4 13.2130 13.1623 12.0953 0.0994 0 
5 24.5700 24.5428 23.9871 20.7126 0.0954 

 
 

Applying active control 

The rigid body modes are uncontrollable from the internal force (Preumont, A. & Seto, K., 
2002) whereby in this system the internal force is the feedback controller, so only the elastic 
modes are retained in this system. 

The response of linear time-invariant models expressed in the standard state space equation 
form is 

                                                                uxx BA       (23) 
      

                                                                      uxy DC            (24)

        

that is, as a set of coupled, first-order differential equations. The solution proceeds in two 
steps; first the state-variable response x(t) is found by solving the set of first-order state 
equations, Equation (23), and then the state response is substituted into the algebraic output 
equation, Equation (24) in order to compute y(t). 

Based on the equation of motion of the active suspension unit and the equation of motion of 
the beam in Equation (5) and (14), the state space representation of the proposed suspension 
system is: 
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